Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters

نویسنده

  • Alexei A. Mailybaev
چکیده

The paper develops Newton’s method of finding multiple eigenvalues with one Jordan block and corresponding generalized eigenvectors for matrices dependent on parameters. It computes the nearest value of a parameter vector with a matrix having a multiple eigenvalue of given multiplicity. The method also works in the whole matrix space (in the absence of parameters). The approach is based on the versal deformation theory for matrices. Numerical examples are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

Multigrid Arnoldi for Eigenvalues

A new approach is given for computing eigenvalues and eigenvectors of large matrices. Multigrid is combined with the Arnoldi method in order to solve difficult problems. First, a two-grid method computes eigenvalues on a coarse grid and improves them on the fine grid. On the fine grid, an Arnoldi-type method is used that, unlike standard Arnoldi methods, can accept initial approximate eigenvect...

متن کامل

Eigenvalues for Equivariant Matrices

An equivariant matrix A commutes with a group of permutation matrices. Such matrices often arise in numerical applications where the computational domain exhibits geometrical symmetries, for instance triangles, cubes, or icosahedra. The theory for block diagonalizing equivariant matrices via the Generalized Fourier Transform (GFT) is reviewed and applied to eigenvalue computations. For dense ma...

متن کامل

Eigenvalues and eigenvectors of tridiagonal matrices

This paper is continuation of previous work by the present author, where explicit formulas for the eigenvalues associated with several tridiagonal matrices were given. In this paper the associated eigenvectors are calculated explicitly. As a consequence, a result obtained by WenChyuan Yueh and independently by S. Kouachi, concerning the eigenvalues and in particular the corresponding eigenvecto...

متن کامل

Ela Eigenvalues and Eigenvectors of Tridiagonal Matrices

This paper is continuation of previous work by the present author, where explicit formulas for the eigenvalues associated with several tridiagonal matrices were given. In this paper the associated eigenvectors are calculated explicitly. As a consequence, a result obtained by WenChyuan Yueh and independently by S. Kouachi, concerning the eigenvalues and in particular the corresponding eigenvecto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2006